证明:分别过G、F作GH⊥BC,FI⊥AB,垂足分别为H、I,∵CD⊥AB于D,GF∥AB,∴四边形DGFI为矩形,∴FI=GD,∵BE平分∠ABC,∴GD=GH,∴FI=GH,∵∠ACB=90°,∴∠DCH+∠ACD=90°,且∠A+∠ACD=90°,∴∠FAI=∠GCH,在△AFI和△CGH中, ∠FAI=∠GCH ∠AIF=∠GHC=90° FI=GH ,∴△AFI≌△CGH(AAS),∴AF=CG.