设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且∫(t,t2)(0,0)

2024-12-03 23:10:06
推荐回答(1个)
回答1:

由于曲线积分Lf(x,y)dx+xcosydy在全平面与路径无关

?f(x,y)
?y
?
?x
(xcosy),即f′y=cosy
∴f(x,y)=siny+g(x),其中g(x)是只含有变量x的函数
f(x,y)dx+xcosydy=
f(x,0)dx+
tcosydy
=
f(x,0)dx+tsint2
=t2
∴上式对t求导,得
f(t,0)+sint2+2t2cost2=2t
即:f(t,0)=2t-sint2-2t2cost2
即:f(x,0)=2x-sinx2-2x2cosx2
又由f(x,y)=siny+g(x),知
f(x,0)=g(x)
∴g(x)=2x-sinx2-2x2cosx2
∴f(x,y)=siny+2x-sinx2-2x2cosx2