如图,在△ABC中,∠C=90°,AC=9,BC=12,以点C为圆心,AC为半径的圆交AB于点D,求AD的长

2025-05-06 12:53:33
推荐回答(1个)
回答1:

解答:解:过C作CE⊥AB于E,
∵CE⊥AB,CE过圆心C,
∴AD=2AE.
∵△ABC中,∠C是直角,AC=9,BC=12,
∴由勾股定理得:AB=

AC2+BC2
=15,
由三角形的面积公式得:AC×BC=AB×CE,即9×12=15CE,
∴CE=
9×12
15
=
36
5

在△AEC中,由勾股定理得:AE=
AC2?CE2
=
92?(
36
5
)
2
=
27
5

∴AD=2AE=
54
5