题中给出可整除的数有2、3、4、5、6、7、8、9共8个,经观察:
能被8整除的数自然能被2和4整除;能被9整除的自然数能被3整除;能被8和9整除的数肯定能被6整除,所以我们只需要考虑5、7、8、9这四个数.
⑴因为1993abc能被5整除,所以c=0或5,再由这个七位数肯定是偶数(能被2整除),可知c=0.
⑵因为1993abc能被9整除,所以(1+9+9+3+a+b+0)÷9,即(22+a+b)÷9.22+5=27=3×9,22+14=36=4×9,那么a+b=5或14.(a+b不能超过18)
⑶因为1993abc能被8整除,所以ab0÷8可以考虑成ab÷4,4的倍数有32、60、88,这其中各个位上数字的和为5或14的有32一个,所以a和b可能是3和2.
⑷把a=3,b=2,c=0代入算式中,1993320÷7可以看成199332÷7,因为(332-199)÷7=19,所以1993320能被7整除.
根据以上分析可知,这个七位数的后三位数依次是3、2、0.
2、3、4、5、6、7、8、9的最小公倍数是2520,,1993320/2520=791
最后三位数字是320