(1)∵bcosC=(2a-c)cosB∴由正弦定理得,sinBcosC=(2sinA-sinC)cosB,sinBcosC=2sinAcosB-sinCcosB,sin(B+C)=2sinAcosB,∵B+C=π-A,∴sin(B+C)=sinA,∴cosB= 1 2 ,则B=60°;(2)由(1)得,B=60°,根据余弦定理得,b2=a2+c2-2accosB,∵b2=ac,∴ac=a2+c2-ac,即(a-c)2=0,∴a=c,则三角形是等边三角形.