在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC=(2a-c)cosB(1)求角B的大小(2)若b2=ac,试确

2025-04-29 12:38:45
推荐回答(1个)
回答1:

(1)∵bcosC=(2a-c)cosB
∴由正弦定理得,sinBcosC=(2sinA-sinC)cosB,
sinBcosC=2sinAcosB-sinCcosB,
sin(B+C)=2sinAcosB,
∵B+C=π-A,∴sin(B+C)=sinA,
∴cosB=

1
2
,则B=60°;
(2)由(1)得,B=60°,
根据余弦定理得,b2=a2+c2-2accosB,
∵b2=ac,∴ac=a2+c2-ac,即(a-c)2=0,
∴a=c,则三角形是等边三角形.