解答:解:(1)连接DF、EF.∵点D、F、E分别是AB、BC、AC的中点,∴DF∥AC,EF∥AB.∴ADFE是平行四边形.∴AF与DE互相平分;(2)∵DE= 1 2 BC,∴若AF=DE,则AF= 1 2 BC,又AF是中线,所以可得∠BAC=90°.即当∠BAC=90°时,AF与DE相等;(3)∵AF与DE互相平分,∴若AF与DE垂直,则AD=AE.又D、E分别是AB、AC的中点,∴AB=AC.即当AB=AC时,AF与DE垂直.