(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)

麻烦用简便算法,谢谢
2025-02-27 03:27:35
推荐回答(5个)
回答1:

原式乘以(3-1)再除以2
原式=(3^64-1)/2=1716841910146256242328924544640

回答2:

(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)÷2
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)÷2
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)÷2
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)÷2
=(3^16-1)(3^16+1)(3^32+1)÷2
=(3^32-1)(3^32+1)÷2
=(3^64-1)/2

回答3:

(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)/2
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)/2
……
=(3^64-1)/2

回答4:

(3-1)*...

(3^64-1)/2

回答5:

(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)/2
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)/2
=……
=(3^64-1)/2