解:(1)∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠DAC=∠DAB=∠BAC=15°,∠ACE=∠ACB=45°,
∴∠CDA=∠BAD+∠ABD=75°,∠BEC=∠BAC+∠ECA=75°,
∴∠BEC=∠ADC;
(2)相等,
理由:如图①,过点F作FH⊥BC于H.作FG⊥AB于G,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴HF=FG,∠DHF=∠EGF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠DAC=∠BAC=15°,
∴∠CDA=75°,
∵∠HFC=45°,∠HFG=120°,
∴∠GFE=15°,
∴∠GEF=75°=∠HDF,
在△DHF和△EGF中,
|
∠DHF=∠EGF |
∠HDF=∠GEF |
HF=GF |
|
|
,
∴△DHF≌△EGF(AAS),
∴FE=FD;
(3)成立.
理由:如图②,过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴MF=FN,∠DMF=∠ENF=90°,
∴四边形BNFM是圆内接四边形,
∵∠ABC=60°,
∴∠MFN=180°-∠ABC=120°,
∵∠CFA=180°-(∠FAC+∠FCA)=180°-(∠ABC+∠ACB)=180°-(180°-∠ABC)=180°-(180°-60°)=120°,
∴∠DFE=∠CFA=∠MFN=120°.
又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,
∴∠DFM=∠NFE,
在△DMF和△ENF中,
|
∠DMF=∠ENF |
MF=NF |
∠DFN=∠NFE |
|
|
∴△DMF≌△ENF(ASA),
∴FE=FD.