正项数列{a n },其前n项和为S n 并且满足:a n+1 2 -a n 2 =2 n (S n+1 -S n +a n )且a 1 =1,n∈N*

2025-04-27 17:57:28
推荐回答(1个)
回答1:

(I)∵a n+1 2 -a n 2 =2 n (S n+1 -S n +a n )且a 1 =1,n∈N*.
∴(a n+1 -a n )(a n+1 +a n )=2 n (a n+1 +a n ),
∴a n+1 -a n =2 n
∴a n =a 1 +(a 2 -a 1 )+(a 3 -a 2 )+…+(a n -a n-1
=1+2+2 2 +…+2 n-1
=2 n -1.
(II) b n =
a n
a n+1
=
2 n -1
2 n+1 -1
,此数列是增数列.用数学归纲法证明如下:
(1) b 2 - b 1 =
2 2 -1
2 3 -1
=
3
7
>0
,∴b 2 >b 1
(2)假设b k >b k-1 ,即
2 k -1
2 k+1 -1
-
2 k-1 -1
2 k -1
>0

2 k+1 -1
2 k+2 -1
-
2 k -1
2 k+1 -1
=
2? 2 k -1
2? 2 k+1 -1
-
2? 2 k-1 -1
2? 2 k -1
>0,
即b k+1 >b k
由(1)、(2)知, b n =
a n
a n+1
是增数列.