(1)f′(x)=-3x2+2x=-3x(x-
),2 3
f(x)=-x3+x2在(-∞,0),(
,+∞)上是减函数,2 3
在(0,
)上是增函数,2 3
故f极大(x)=f(
)=2 3
,f极小(x)=f(0)=0;4 27
(2)令F(x)=f(x)+g(x)+x3-(a+2)x
=x2+alnx-(a+2)x
F′(x)=
,(x-1)(2x-a) x
又∵F(1)=1-(a+2)≥0,
∴a≤-1;
故在a≤-1时,
F′(x)>0,
故a≤-1.
(3)证明:∵当a=-1时,x2-lnx-x>0对任意x∈(1,+∞)上恒成立,
∴(n+i)2-ln(n+i)-(n+i)>0,
∴0<ln(n+i)<(n+i)2-(n+i),
∴
>1 ln(n+i)
=1 (n+i)(n+i-1)
-1 n+i-1
;1 n+i
+1 ln(n+1)
+…+1 ln(n+2)
1 ln(n+2013)
>
-1 n
+1 n+1
-1 n+1
+…+1 n+2
-1 n+2012
1 n+2013
=
-1 n
=1 n+2013
.2013 n(n+2013)