已知函数f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).(1)求f(x)的极值;(2)若对任意x∈[1,+∞],

2024-12-02 07:09:15
推荐回答(1个)
回答1:

(1)f′(x)=-3x2+2x=-3x(x-

2
3
),
f(x)=-x3+x2在(-∞,0),(
2
3
,+∞)上是减函数,
在(0,
2
3
)上是增函数,
故f极大(x)=f(
2
3
)=
4
27
,f极小(x)=f(0)=0;
(2)令F(x)=f(x)+g(x)+x3-(a+2)x
=x2+alnx-(a+2)x
F′(x)=
(x-1)(2x-a)
x

又∵F(1)=1-(a+2)≥0,
∴a≤-1;
故在a≤-1时,
F′(x)>0,
故a≤-1.
(3)证明:∵当a=-1时,x2-lnx-x>0对任意x∈(1,+∞)上恒成立,
∴(n+i)2-ln(n+i)-(n+i)>0,
∴0<ln(n+i)<(n+i)2-(n+i),
1
ln(n+i)
1
(n+i)(n+i-1)
=
1
n+i-1
-
1
n+i

1
ln(n+1)
+
1
ln(n+2)
+…+
1
ln(n+2013)

1
n
-
1
n+1
+
1
n+1
-
1
n+2
+…+
1
n+2012
-
1
n+2013

=
1
n
-
1
n+2013
=
2013
n(n+2013)