最全面的是N维分布函数或概率密度函数。最常用的是一维和二维数字特征,如均值函数、方差函数。
随机过程依赖于参数的一组随机变量的全体,参数通常是时间。随机变量是随机现象的数量表现,其取值随着偶然因素的影响而改变。例如,某商店在从时间t0到时间tK这段时间内接待顾客的人数,就是依赖于时间t的一组随机变量,即随机过程。
随机过程的理论产生于20世纪初期,是应物理学、生物学、管理科学等方面的需要而逐步发展起来的。目前,在自动控制、公用事业、管理科学等方面都有广泛的应用。
发展情况:
1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年N.维纳给出了布朗运动的数学定义,这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。
1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。
1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。
最全面的是N维分布函数或概率密度函数。
最常用的是一维和二维数字特征,如均值函数、方差函数。
工程上一般用时域自相关函数和频域功率谱密度,来描述SP的统计特性。