如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中点,F是AB中点.(1)求证:EF∥面

2025-04-28 22:40:36
推荐回答(1个)
回答1:

(1)证明:取AC的中点G,连接EG、FG,
∵EG∥CC1,CC1?平面EFG,∴CC1∥平面EFG,
同理:BC∥平面EFG,
又∵BC、CC1?平面BCC1B1,∴平面EFG∥平面BCC1B1
(2)∵直三棱柱ABC-A1B1C1
∴EG⊥平面ABC
∵EG∥CC1,∠FEG为直线EF与CC1所成的角
△EFG为Rt△,∴tan∠FEG=

FG
EG
=
1
2
a
a
=
1
2

(3)取AF的中点H,连接GH、EH,
∵AC=BC,∴CF⊥AB,
又∵GH∥CF,∴GH⊥AB,
有(2)知EG⊥平面ABC,∴GH为EH在平面ABC中的射影,
∴∠EHG为二面角E-AB-C的平面角,
又△EHG是直角三角形,且∠HGE=90°,HG=
1
2
FC=
2
4
a
,EG=CC1=a,
tanθ=
EG
HG
a
2
4
a
=2
2