(1)证明:取AC的中点G,连接EG、FG,
∵EG∥CC1,CC1?平面EFG,∴CC1∥平面EFG,
同理:BC∥平面EFG,
又∵BC、CC1?平面BCC1B1,∴平面EFG∥平面BCC1B1.
(2)∵直三棱柱ABC-A1B1C1,
∴EG⊥平面ABC
∵EG∥CC1,∠FEG为直线EF与CC1所成的角
△EFG为Rt△,∴tan∠FEG=
=FG EG
=
a1 2 a
.1 2
(3)取AF的中点H,连接GH、EH,
∵AC=BC,∴CF⊥AB,
又∵GH∥CF,∴GH⊥AB,
有(2)知EG⊥平面ABC,∴GH为EH在平面ABC中的射影,
∴∠EHG为二面角E-AB-C的平面角,
又△EHG是直角三角形,且∠HGE=90°,HG=
FC=1 2
a,EG=CC1=a,
2
4
则tanθ=
=EG HG
=2a
a
2
4
.
2