求证: log2 (3) + log3 (8) + log4 (15) + log5 (4) > 6多谢

2025-02-25 10:51:10
推荐回答(1个)
回答1:

log4(15)+log5(4)
=log4(3)+log4(5)+log5(4)
≥log4(3)+2√[log4(5)*log5(4)]
=log4(3)+2,
log2(3)+log3(8)+log4(3)
=3/2log2(3)+3log3(2)
≥2√[3/2log2(3)*3log3(20)]
=3√2,
∴原式≥3√2+2>6。