高数连续与间断

2025-04-26 01:00:45
推荐回答(3个)
回答1:


用零点定理

回答2:

解: 1) ( x --> 0 ) lim F(x) = ( x --> 0 ) lim { (0,x) ∫ f(u)du / x^2 } = ( x --> 0 ) lim { f(x) / (2x) } = (1/2) * ( x --> 0 ) lim { f(x) / x } = (1/2) * 1 = 1/2 令 F(0) = ( x --> 0 ) lim F(x) 有 a = 1/2 2) x ≠ 0 时, F'(x) = ( f(x) / x^2 - 2* (0,x) ∫ f(u)du / x^3 = [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3 x = 0 时, F'(0) = ( x --> 0 ) lim {F(x) - F(0) ]/x } = (罗比达法则) = = ( x --> 0 ) lim {F'(x) } = ( x --> 0 ) lim { [ x * f(x) - 2* (0,x) ∫ f(u)du ] / x^3 } = (罗比达法则) = = ( x --> 0 ) lim { [ x * f'(x) - f(x) ] /(3* x^2) } = ( x --> 0 ) lim { [ x * f"(x) ] /(6* x) } = ( x --> 0 ) lim { f"(x) /6 } = f"(0) /6

回答3:

记 f(x) = 1+2x-3x^2+x^3,
则 f(x) 连续,f(-1) = -5, f(0) = 1, 则 f(x) 至少有 1 个零点,
即方程至少有 1 个实根