1⼀3*5+1⼀5*7+1⼀7*9+1⼀9*11+1⼀11*13+1⼀13*15=?

2025-02-25 15:13:05
推荐回答(5个)
回答1:

原式=1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15
=1/2(1/3-1/5+1/5-1/7+......+1/11-1/13+1/13-1/15)
=1/2(1/3-1/15)
=1/2 * 4/15
=2/15 .

回答2:

拆开来啊,1/3*5拆成1/2*(1/3-1/5)
最后答案就等于 1/2*(1/3-1/15)=2/15

回答3:

解:因为1/3*5=1/3-1/5,下面各数变形相同。
所以原式=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1/3-1/15
=4/15.

回答4:

首先要知道 1/n*(n+2)=1/2( 1/n - 1/(n+2) )

所以:
1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15
= 1/2(1/3-1/5+1/5-1/7+...+1/13-1/15)
= 1/2(1/3-1/15)
= 1/2 * 4/15
= 2/15

回答5:

1/3*5+1/5*7+1/7*9+1/9*11+1/11*13+1/13*15
=1/2*(1/3-1/5+1/5-1/7+....1/13-1/15)
=1/2(5/15--1/15)
=2/15