令√[(1-y)/(1-x)] =u则(1-y)/(1-x) =u²得y=1+(x-1)u²则y'=u²+2uu'(x-1)代入原方程得u²+2uu'(x-1)=u若u=0,则得到方程的一个解y=1若u≠0,则u+2u'(x-1)=1,即2du/(u-1)+dx/(x-1)=02ln|u-1| + ln|x-1|+ln|C|(u-1)²(x-1)=C{√[(1-y)/(1-x)]-1}²(x-1)=C
解答如图