解答:(1)证明:∵
+(a-2b)2=0,
a+b-3
∴
,解得
a+b-3=0 a-2b=0
,
a=2 b=1
∴A(1,3),B(2,0),
作AE⊥OB于点E,
∵A(1,3),B(2,0),
∴OE=1,BE=2-1=1,
在△AEO与△AEB中,
∵
,
AE=AE ∠AEO=∠AEB=90° OE=BE
∴△AEO≌△AEB,
∴AO=AB;
(2)证明:∵∠CAD=∠OAB,
∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,
在△AOC与△ABD中,
∵
,
OA=AB ∠OAC=∠BAD AC=AD
∴△AOC≌△ABD(SAS);
(3)解:点P在y轴上的位置不发生改变.
理由:设∠AOB=∠ABO=α,
∵由(2)知,△AOC≌△ABD,
∴∠ABD=∠AOB=α,
∵OB=2,∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,∠POB=90°,
∴OP长度不变,
∴点P在y轴上的位置不发生改变.