第二定义:
椭圆平面内到定点 F(c,0)的距离和到定直线 L: ( F 不在
L上)的距离之比为常数
(即离心率 e,0
(该定直线的方程是 (焦点在x轴上),或
(焦点在y轴上))。
扩展资料:
其他定义:
根据椭圆的一条重要性质:椭圆上的点与椭圆长轴(事实上只要是直径都可以)两端点连线的斜率之积是定值,定值为 (前提是长轴平行于x轴。若长轴平行于y轴,比如焦点在y轴上的椭圆,可以得到斜率之积为 -a²/b²=1/(e²-1)),可以得出:
在坐标轴内,动点( 注意:考虑到斜率不存在时不满足乘积为常数,所以 无法取到,即该定义仅为去掉四个点的椭圆。 椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。 参考资料:百度百科-----椭圆 )到两定点(
)(
)的斜率乘积等于常数m(-1
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1:平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2:平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。如图,有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
如图,将两个半径与圆柱半径相等的半球从圆柱两端相中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2+b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ
,
y=bsinθ
椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)
关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。
Euclid,
Archimedes,
Apollonius,
Pappus
等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以
Apollonius
所著的八册《圆锥截缐论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler
行星运行三定律的发现才知道行星绕太阳运\行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler
三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。
第2定义、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线);
第1定义、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
这两个定义是等价的
最佳答案其实很简单,椭圆第二定义是说椭圆上的点到定点的距离是到定直线的距离的e倍,注意到椭圆有两条准线,两条准线间距离的e倍也就是定值,它等于到两定点的距离和,即第一定义。