答:1 )△=[2(m+1)]^2-4*(m^2-1)=8m+8≥0 ∴m≥-12)由韦达定理,x1+x2=-2(m+1);x1x2=m^2-1∵(x1-x2)^2=16-x1x2∴(x1+x2)^2-3x1x2=16∴4m^2+8m+4-3m^2+3=16∴m^2+8m-9=0∴m=-9 or m=1∵m≥-1∴m=1