1.收敛
用比较审敛法。设原级数是∑an,构造级数∑bn=∑1/[n^(1.2)]。
∑bn是一个p=1.2的p级数,显然是收敛的。
考察lim
{n->无穷大}
an/bn
=lim
{n->无穷大}
[(n^0.5)*(n^1.2)]/(n^4+1)^0.5
=lim
{n->无穷大}
[(n^3.4)/(n^4+1)]^0.5
=0
由∑bn收敛得到原级数也收敛。
2.发散
用比较审敛法。设原级数是∑an,构造级数∑bn=∑1/n
∑bn是调和级数,显然发散。
考察lim
{n->无穷大}
an/bn
=lim
{n->无穷大}
[(n+1)*n]/(n^2+3n-5)
=1
由∑bn发散得到原级数也发散。
×××××××××××××××××××××××
其实这种题如果是填空选择的话,只要“抓大头”就行了。
1.分子最高n^0.5,分母最高n^2,比一下是1/n^1.5。相当于p=1.5的p级数,所以收敛。
2.分子最高n,分母最高n^2,比一下是1/n,相当于调和级数,所以发散。