(2011?怀柔区一模)如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线

2025-05-05 22:05:38
推荐回答(1个)
回答1:

解法一:
(Ⅰ)证明:∵E,H分别是线段PA,AB的中点,
∴EH∥PB.
又∵EH?平面EFH,PB?平面EFH,
∴PB∥平面EFH.

(Ⅱ)解:∵F为PD的中点,且PA=AD,∴PD⊥AF,
又∵PA⊥底面ABCD,BA?底面ABCD,∴AB⊥PA.
又∵四边形ABCD为正方形,∴AB⊥AD.
又∵PA∩AD=A,∴AB⊥平面PAD.
又∵PD?平面PAD,∴AB⊥PD.
又∵AB∩AF=A,∴PD⊥平面AHF.

(Ⅲ)∵PA⊥平面ABCD,PA?平面PAB,∴平面PAB⊥平面ABCD,
∵AD?平面ABCD,平面PAB∩平面ABCD=AB,AD⊥AB,∴AD⊥平面PAB,
∵E,F分别是线段PA,PD的中点,∴EF∥AD,∴EF⊥平面PAB.
∵EH?平面PAB,EA?平面PAB,∴EF⊥EH,∴EF⊥EA,
∴∠HEA就是二面角H-EF-A的平面角.
在Rt△HAE中,AE=

1
2
PA=1,AH=
1
2
AB=1,∴∠AEH=45°,
所以二面角H-EF-A的大小为45°.

解法二:建立如图所示的空间直角坐标系A-xyz,
∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).
(Ⅰ)证明:∵
PB
=(2,0,?2)
EH
=(1,0,?1)

PB
=2
EH

∵PB?平面EFH,且EH?平面EFH,
∴PB∥平面EFH.

(Ⅱ)解:
PD
=(0,2,?2)
AH
=(1,0,0)
AF
=(0,1,1)