解析:第一个箭头指向:令u=x+y,则当y=-∞时,u=-∞,当y=z-x时,u=z,于是∫(-∞,+∞)dx∫(-∞,z-x)f(x,y)dy=∫(-∞,+∞)dx∫(-∞,z)f(x,u-x)du,因为积分跟字母没有关系,因此u用y来代替,就得到你第一个箭头所指的式子!疑难解释:为什么令u=x+y?因为我们的目的是要把积分上限z-x变成z,即要使得y=z-x→y=z,那很显然,两边同时加上x,得x+y=z,故令u=x+y第二个箭头指向就是交换积分次序!