如图三角形ABC中,CA=CB,角CAB=角CBA=45度,CD平分角ACB交AB于D,点E为BC的中点,CN垂

2025-02-28 04:05:26
推荐回答(2个)
回答1:

在AE上截取AF=CN,连接CF,由题设∠ACB=180°-45°×2=90°,CN⊥AE,
得∠CAF=90°-∠ACN=∠BCN,并CA=CB,AF=CN,
∴△CAF≌△BCN,得CF=BN,∠ACF=∠CBN=45°,那么∠ECF=90°-45°=45°=∠EBN;
∵EC=EB,CF=BN,∴△ECF≌△EBN,得FE=EN。
于是AE=AF+FE=CN+EN。

回答2:

证明:过点B作BM垂直BC,交CN的延长线于M,则∠MBN=∠EBN=45°.
∠CAE=∠BCM(均为∠ACN的余角);又∠ACE=∠CBM;AC=BC.
则⊿ACE≌ΔCBM(ASA),得AE=CM;
BM=CE.
又CE=BE,则BM=BE.
又∠MBN=∠EBN=45°;BN=BN.故⊿MBN≌ΔEBN(SAS),得EN=MN.
所以,AE=CM=CN+MN=CN+EN.