设:-1f(x2)-f(x1)=ax2/(x2^2-1)-ax1/(x1^2-1)=a*(x2x1^2-x2-x1x2^2+x1)/[(x2+1)(x2-1)(x1+1)(x1-1)]=a*[x1x2(x1-x2)+(x1-x2)]/[(x2+1)(x2-1)(x1+1)(x1-1)]=a*(x1x2+1)(x1-x2)/[(x2+1)(x2-1)(x1+1)(x1-1)]-1看分母:x2+1>0 x1+1>0 x2-1<0 x1-1<0 所以分母大于0分子:-10 x1-x2<01a>0 分子<0 f(x2)2a<0 分子>0f(x2)>f(x1)增函数!