用定义和例子解释统计学里面的随机变量是什么?

2025-02-27 21:38:20
推荐回答(2个)
回答1:

表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。
一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω 。 随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 ,则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。
有些随机现象需要同时用多个随机变量来描述。例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量。类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 。描述随机向量的取值规律 ,用联合分布函数。随机向量中每个随机变量的分布函数,称为边缘分布函数。若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。独立性是概率论所独有的一个重要概念。

回答2:

统计学发展史说明,先有社会统计学后有数理统计学,先有变量后有随机变量;社会统计学以变量为基楚,数理统计学以随机变量为基础。且变量与随机变量是在一定条件下可以相互转化的数学概念。我们知道变量与随机变量是既有联系又有区别的。当变量取值的概率不是1时,变量就变成了随机变量;当随机变量取值的概率为1
时,随机变量就变成了变量。解读:通俗的讲就是先有谁后有谁,在统计学中先有变量后有随机变量,它俩个是既有联系又有区别,切在一定的条件下可以相互转化的数学概念。通俗的讲:就是确定它们两个有血缘关系,也就是说先有老子后有儿子。现在是儿子不认老子,还要当老子,称自己为科学统计;统计学就是数理统计学。这不是乱了套了吗,连老子都不认了,连辈分都不讲,这天下那有儿子当老子的道理,简直是岂有此理,这孩子真是三天不打上房揭瓦;非得把他关起来,三天不让他出门在家狂写作业吧。 社会统计学与数理统计学的统一理论,确立了社会统计学流派变量在统计学的主导地位;使以,美国为代表的发达国家数理统计学流派随机变量,走下了神坛及领导地位成为支流。
近70年,由于数理统计学的飞速发展,大有“吃掉”社会统计学的势头,尤其是 以美国为代表的发达国家几乎认为统计学就是数理统计学,称为科学统计。实际上,这是一个极大的误区。就是一个大呼悠,是一种统计学的错误学说。