(2014?温州二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=2,∠ABC=4

2025-05-05 07:06:00
推荐回答(1个)
回答1:

(I)证明:∵AB=1,BC=

2
,∠ABC=45°,
∴AB⊥AC…(2分)
∵PA⊥平面ABCD,∴PA⊥AB,又∵AC∩AP=A
∴AB⊥平面PAC,又∵AB∥CD
∴CD⊥平面PAC,∴CD⊥AE…(4分)
又∵AE⊥PC,又∵PC∩CD=C
∴AE⊥平面PCD…(7分)
(II)解:∵AD∥BC,∴即求直线BC与平面ABE所成的角  …(9分)
∵AE⊥平面PCD,∴AE⊥PC
又∵AB⊥AC,且PC在平面ABC上的射影是AC,
∴AB⊥PC,
∴PC⊥平面ABE,
∴∠CBE是直线BC与平面ABE所成的角.…(11分)
∵Rt△PAC中,CE=
3
3

∴Rt△CBE中,sin∠CBE=
CE
CB
3
3
2
6
6

即直线AD与平面ABE所成角的正弦值为
6
6
.…(14分)