证明:如果方阵A和B都可相似对角化且有相同的特征多项式,则A~B

2025-04-05 13:52:40
推荐回答(3个)
回答1:

A、B特征多项式相同,设特征多项式的根为 λ1,λ2,……,λn (可能有重根).
由于A、B都可对角化,则都相似于D=diag{λ1,λ2,……,λn},
设 P1^{-1} A P1 =D,P2^{-1} B P2 =D,
则 P1^{-1} A P1 = P2^{-1} B P2,
故 A P1 = (P2*P1^{-1})^{-1} B (P2*P1^{-1}) = P^{-1} B P ,(P= P2*P1^{-1})
即A~B.

回答2:

A、B特征多项式相同,设特征多项式的根为 λ1,λ2,……,λn (可能有重根).
由于A、B都可对角化,则都相似于D=diag{λ1,λ2,……,λn},
设 P1^{-1} A P1 =D,P2^{-1} B P2 =D,
则 P1^{-1} A P1 = P2^{-1} B P2,
故 A P1 = (P2*P1^{-1})^{-1} B (P2*P1^{-1}) = P^{-1} B P ,(P= P2*P1^{-1})
即A~B.

望采纳!~~~

回答3:

利用相似有传递性,证明a~c,b~c,所以a~b。