对数函数主要性质:
定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1。
和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}。
值域:实数集R,显然对数函数无界。
定点:对数函数的函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数。
0
奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。解释如下: 也就是说:若y=logab (其中a>0,a≠1,b>0) 当00。 当a>1, b>1时,y=logab>0。 当a>1, 0
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。