求微分方程y✀+3y=e^2x的通解

2025-04-05 23:24:18
推荐回答(1个)
回答1:

先求y'-3y=0的通解,得到y=Ce^(3x)
用常数变易法,令原方程的通解为y=C(x)e^(3x)
代入原方程,化简后可得C'(x)=e^(-x)
积分得到C(x)=-e^(-x)+C
代回后即得到原方程通解y=Ce^(3x)-e^(2x)