设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x?t)f(t)dtx∫x0f(x?t)dt

2024-11-28 09:28:14
推荐回答(1个)
回答1:

令x-t=u;
则:dt=d(-u)=-du;

f(x?t)dt=
f(u)d(?u)
=
f(u)du

因此:
lim
x→0
(x?t)f(t)dt
x∫
f(x?t)dt
=
lim
x→0
x∫
f(t)dt
?∫
tf(t)dt
x∫
f(u)du

=
lim
x→0
f(t)dt+xf(x)?xf(x)
x
f(u)du+xf(x)
(洛必达法则)
=
lim
x→0
f(t)dt
x∫
f(u)du+xf(x)

=
lim
x→0
f(x)
f(x)+f(x)+xf′(x)
(洛必达法则)
=
f(0)
f(0)+f(0)+0

=
1
2