已知X,Y都是正实数,求证:X3+Y3大于等于X2Y+XY2

已知X,Y都是正实数,求证:X3+Y3大于等于X2Y+XY2
2025-05-05 17:17:51
推荐回答(2个)
回答1:

证明:X3+Y3-(X2Y+XY2)
=X3+Y3-X2Y-XY2
=X3-X2Y+Y3-XY2
=X²(X-Y)+Y²(Y-X)
=X²(X-Y)-Y²(X-Y)
=(X²-Y²)(X-Y)
=(X+Y)(X-Y)(X-Y)
=(X+Y)(X-Y)²
因为X,Y都是正实数,所以:
(X+Y)>0,(X-Y)²≥0
(X+Y)(X-Y)²≥0
即:X3+Y3-(X2Y+XY2)≥0
所以得证:X3+Y3大于等于X2Y+XY2

回答2:

两式相减
x^3+y^3-x^2y-xy^2
=x^2(x-y)-y^2(x-y)
=(x-y)(x^2-y^2)
=(x-y)^2(x+y)
因为x,y均为正实数,所以x+y>0
(x-y)^2≥0

那么两式相减≥0,所以x^3+y^3≥x^2y+xy^2