你说的太对了。增函数不一定就是大于等于零
但是有一种可能,就是等于0的点只有个别点。比如y=x^3.是增函数,在(0,0)导数是0,但是只有这么一个点,他仍然是单调的。比如y=1,不增不减,导数=0.因为这样的点有无穷多个。
a存在 且a=1或2或3或4 解: 求导后有 f`(x)=3x^2+2ax-2 为二次函数模型 且有b^2-4ac=4a^2+24 恒大于0 所以 a∈R ① 当f(x)=x^3+ax^2-2x+5
在x∈(-3,1/6)上单调递增 则有f`(x)最小值大于0 即(4ac-b^2)/4a大于0 化简后有4a^2+24小于0 解得 此时a不存在 ② 当f(x)=x^3+ax^2-2x+5
在x∈(-3,1/6)上单调递减时 则有f`(x)的两根 (-a+根号(a^2+6))/3 和(-a-根号(a^2+6))/3 分别大于1/6 和小于-3 即 (-a+根号(a^2+6))/3大于1/6 (-a-根号(a^2+6))/3小于-3 解得 a小于23/4 或 a小于25/6 将上述2解取其交集有 a小于25/6 所以可以取 1.2.3.4
希望能解决您的问题。