根据
,b/sinB=a/sinA,a=2√3,
A=π/3,B=x,b=4sinx,c/sinC=a/sinA,
c=2√3/(√3/2)*sinC=4sinC=4sin(A+B)
=4sin(π/3+x)=2√3cosx+2sinx
周长:y=a+b+c=2√3+4sinx+2√3cosx+2sinx
=2√3+6sinx+2√3cosx
0
=2√3+4√3[sinx*cos(π/6)+cosx*sin(π/6)]
=2√3+4√3sin(x+π/6)
当sin(x+π/6)=1时函数有最大值,
y=6√3