17.
18.证明:在△ABC与△ADE中,
AB=AD
BC=DE
AC=AE,
∴△ABC≌△ADE(SSS),
∴∠ABC=∠ADE,
∴∠ADC=∠ADE+∠CDE=∠ABC+∠BAD∴∠CDE=∠BAD
19.解:(1)作图如下:
(2)证明:∵根据作法可知:EF是线段AD的垂直平分线,∴AE=DE,AF=DF,
∴∠EAD=∠EDA,∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,同理可得:DF∥AE,
∴四边形AEDF是平行四边形,
∵AE=DE,∴平行四边形AEDF是菱形;
(2)∵▱AEDF是菱形,
∴AE=DE=DF=AF,
∵AF=4,∴AE=DE=DF=AF=4,
∵DE∥AC,∴BD/CD=BE/AE,
∴BD/3=7/4,解得:BD=21/4.
答案见追答中的图!
对角线垂直,而且临边相等,即证