计量经济学中的DF检验和ADF检验

2025-03-04 15:10:07
推荐回答(5个)
回答1:

一、DF检验:随机游走序列Xt=Xt-1+μt是非平稳的,其中μt是白噪声。而该序列可看成是随机模型Xt=ρXt-1+μt中参数ρ=1时的情形。

零假设H0:δ=0;备择假设H1:δ<0可通过OLS法估计Xt=α+δXt-1+μt并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t<临界值,则拒绝零假设H0:δ=0,认为时间序列不存在单位根,是平稳的。

二、ADF检验:在DF检验中,实际上是假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。

但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(AugmentDickey-Fuller)检验。

独立四格表资料检验

四格表资料的卡方检验用于进行两个率或两个构成比的比较。

1、专用公式:

若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)

自由度v=(行数-1)(列数-1)=1

2、应用条件:

要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。

以上内容参考:百度百科-卡方检验

回答2:

  • 一、DF检验 

  • 随机游走序列 Xt=Xt-1+μt是非平稳的,其中μt是白噪声。而该序列可看成是随机模型Xt=ρXt-1+μt中参数ρ= 1时的情形。也就是说,我们对式  Xt=ρXt-1+μt  

  • (1) 做回归,如果确实发现ρ=1,就说随机变量Xt有一个单位根。可变形式成差分形式:Xt=(ρ-1)Xt-1+μ t =δXt-1+ μt  

  • (2)检验

  • (1)式是否存在单位根ρ=1,也可通过(2)式判断是否有 δ=0检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型 Xt=α+ ρXt-1 +μt  (*)中的参数ρ是否小于1。或者:检验其等价变形式Xt=α+ δXt-1+μt(**)中的参数δ是否小于0 。 

  • 零假设  H0:δ= 0;备择假设 H1:δ< 0   可通过OLS法估计Xt=α+ δXt-1+μt并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t < 临界值,则拒绝零假设H0:δ= 0 ,认为时间序列不存在单位根,是平稳的。  

  • 二、ADF检验 

  • 在DF检验中,实际上是假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller )检验。

  • 进行ADF检验要分3步:

  • 1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳;

  • 2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换;

  • 3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了。

  • 在进行ADF检验时,必须注意以下两个实际问题:

  • (1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。

  • (2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。

回答3:

看看这个吧你就会了
http://wenku.baidu.com/view/ed25b7254b35eefdc8d333f1.html
http://wenku.baidu.com/view/ed25b7254b35eefdc8d333f1.html

回答4:

f

回答5:

一、DF检验
随机游走序列 Xt=Xt-1+μt是非平稳的,其中μt是白噪声。而该序列可看成是随机模型Xt=ρXt-1+μt中参数ρ= 1时的情形。也就是说,我们对式 Xt=ρXt-1+μt
(1) 做回归,如果确实发现ρ=1,就说随机变量Xt有一个单位根。可变形式成差分形式:Xt=(ρ-1)Xt-1+μ t =δXt-1+ μt
(2)检验
(1)式是否存在单位根ρ=1,也可通过(2)式判断是否有 δ=0检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型 Xt=α+ ρXt-1 +μt (*)中的参数ρ是否小于1。或者:检验其等价变形式Xt=α+ δXt-1+μt(**)中的参数δ是否小于0 。
零假设 H0:δ= 0;备择假设 H1:δ< 0 可通过OLS法估计Xt=α+ δXt-1+μt并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t < 临界值,则拒绝零假设H0:δ= 0 ,认为时间序列不存在单位根,是平稳的。
二、ADF检验
在DF检验中,实际上是假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller )检验。
进行ADF检验要分3步:
1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳;
2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换;
3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了。
在进行ADF检验时,必须注意以下两个实际问题:
(1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。
(2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。