魏尔斯特拉斯函数的构造

2025-04-28 01:11:57
推荐回答(1个)
回答1:

魏尔斯特拉斯的原作中给出的构造是:

其中0
这个函数以及它处处连续而又处处不可导的证明首次出现在魏尔斯特拉斯于1872年6月18日在普鲁士科学院出版的一篇论文中。
证明这个函数处处连续并不困难。由于无穷级数的每一个函数项的绝对值都小于常数,而正项级数是收敛的。由Weierstrass判别法可以知道原级数一致收敛。因此,由于每一个函数项都是 R 上的连续函数,级数和 f(x) 也是 R 上的连续函数。
下面证明函数处处不可导:对一个给定的点 x∈R,证明的思路是找出趋于 x 的两组不同的数列() 和(),使得
lim inf> lim sup
这与函数可导的定义矛盾,于是证明完毕。
一般人会直觉上认为连续的函数必然是近乎可导的。即使不可导,所谓不可导的点也必然只占整体的一小部分。根据魏尔斯特拉斯在他的论文中所描述,早期的许多数学家,包括高斯,都曾经假定连续函数不可导的部分是有限或可数的。这可能是因为直观上想象一个连续但在不可数个点上不可导的函数是很困难的事。当我们绘制函数的图像时,总会画出较为规则的图形,例如满足利普希茨条件的函数图像。
魏尔斯特拉斯函数可以被视为第一个分形函数,尽管这个名词当时还不存在。将魏尔斯特拉斯函数在任一点放大,所得到的局部图都和整体图形相似。因此,无论如何放大,函数图像都不会显得更加光滑,也不存在单调的区间。