答:抛物线y^2=2px焦点F(p/2,0),准线x=-p/2<0设圆心为C(m,n),交点A(x1,0),B(x2,0)则2m=x1+x2,圆C的半径R=AB/2因为:x1-(-p/2)=AFx2-(-p/2)=BF所以:AB=AF+BF=x1+x2+p所以:AB=2m+p,R=AB/2=m+p/2因为:圆C与直线x=-1相切所以:R=m-(-1)=m+1所以:R=m+p/2=m+1所以:p/2=1解得:p=2所以:抛物线方程为y^2=4x