解由题知x=π/4时,f(π/4)=√(a^2+b^2)
则√2/2(a-b)=√(a^2+b^2)
则1/2(a^2+b^2-2ab)=(a^2+b^2)
则2(a^2+b^2)=a^2+b^2-2ab
则a^2+b^2+2ab=0
则(a+b)=0
则b=-a
则f(x)=asinx+acosx
=√2a(√2/2sinx+√2/2cosx)
=√2asin(x+π/4)
则f(x+π/4)=√2asin(x+π/4+π/4)=√2asin(x+π/2)=√2acosx
故函数y=f(x+π/4)=√2acosx是偶函数,关于点(3π/2,0)对称
故选B
发了图片,最快回答,望采纳,谢谢2723