(1)
f(x)=log<3>(4-x)+log<3>(x+2)
4-x>0 and x+2>0
x<4 and x>-2
定义域=(-2, 4)
f(x)=log<3>(4-x)+log<3>(x+2)
f'(x) = -1/[(ln3)(4-x)] +1/[(ln3)(x+2)]
f'(x) =0
-(x+2) + (4-x) =0
-2x +2 =0
x=1
f''(x) = -1/[(ln3)(4-x)^2] -1/[(ln3)(x+2)^2] <0
x=1 ( max)
单调
增加 =(-2, 1]
减小= [1, 4)
(2)
lim(x->-2+) f(x)
=lim(x->-2+) log<3>(4-x)+log<3>(x+2) -> -∞
lim(x->4-) f(x) ->-∞
f(1) = log<3>3+log<3>3 = 2
值域 = (-∞ , 2]
先把对数符号去掉得到 4^x+2^(x+1)<1\ 2^(2x)+2^(x+1)-10) 所以t^2+2t-1<0 所以 0