若0<x,y,z<1,且xy+yz+zx=1求证:y⼀(2-x*3^(1⼀2))+z⼀(2-y*3^(1⼀2))+x⼀(2-z*3^(1⼀2))>=3^(1⼀2)

2025-05-06 00:28:05
推荐回答(1个)
回答1:

将不等式:y/(2-x*3^(1/2))+z/(2-y*3^(1/2))+x/(2-z*3^(1/2))>=3^(1/2)
化简得到2(x+y+z)>=3^(1/2)(xy+yz+zx)+3^(1/2)=2*3^(1/2),
即要证 (x+y+z)>=3^(1/2)
而 (x+y+z)^2=xy+yz+zx+x^2+y^2+z^2=2xy+2xz+2yz+1/2*(x^2+y^2+x^2+z^2+y^2+z^2)>=2xy+2xz+2yz+1/2*(2xy+2xz+2yz)=3xy+3xz+3yz=3
所以(x+y+z)>=3^(1/2)