求证:化简[tan(A+B)-tanA-tanB]÷[tanA·tan(A+B)]=tanB.

RT
2025-04-27 08:05:54
推荐回答(2个)
回答1:

tan(B)=tan(A+B-A)=(tan(A+B)-tanA)/(1+tanA*tan(A+B)
故:tanB/1=(tan(A+B)-tanA)/(1+tanA*tan(A+B)
由合比性质:
tanB/1=(tan(A+B)-tanA)/(1+tanA*tan(A+B)
=(tan(A+B)-tanA-tanB)/(1+tanA*tan(A+B)-1)
=[tan(A+B)-tanA-tanB]/[tanA·tan(A+B)]

回答2:

证明:
[tan(A+B)-tanA-tanB]÷[tanA·tan(A+B)]
=[(tanA+tanB)/(1-tanAtanB) - (tanA+tanB)]/
[ tanA·(tanA+tanB)/(1-tanAtanB)]

=[(tanA+tanB)-(tanA+tanB)·1-tanAtanB] /
[tanA·(tanA+tanB)] 上下同时乘以1-tanAtanB 得

=[1-(1-tanAtanB)]/tanA 约去(tanA+tanB)

=tanB