(1)设P是椭圆Γ上任意一点,
则|PF1|-|PF2|≤|F1F2|=2c,故c=1.
解方程4x2-8x+3=0,得x=
或x=1 2
.3 2
因0<e<1,故
=e=1 2
,因此a=2,从而b2=3.c a
所以椭圆Γ的方程为
+x2 4
=1.y2 3
(2)解法一:焦准距p=
?c=3,设∠OF1B=θ(0≤θ<π),a2 c
则|F1B|=
,|F1A|=3 2?cosθ
,故|AB|=3 2+cosθ
.12 4?cos2θ
|CD|=2
=2
22?sin2θ
,
3+cos2θ
故
=|AB|2
|CD|2
?1 3+cos2θ
.36 (4?cos2θ)2
令t=4-cos2θ∈[3,4],则
=|AB|2
|CD|2
.36
t2(7?t)
令f(t)=t2(7-t),则f'(t)=-3t2+14t=t(14-3t)>0,
故f(t)在[3,4]单调递增,从而f(t)≤f(4)=48,
得
|AB|2