原式=[(1-cos20)/2]^2+[(1-cos100)/2]^2+[(1-cos140)/2]^2+1/16
=1/4*{3-2(cos20+cos100+cos140)+【(cos20)^2+(cos100)^2+(cos140)^2】+1/16
下面分别计算(cos20+cos100+cos140)=cos20-(cos80+cos40)=cos20-2cos60cos20=0
(cos20)^2+(cos100)^2+(cos140)^2=(1+cos40)/2+(1+cos200)/2+(1+cos280)/2
=(1+cos40)/2+(1+cos160)/2+(1+cos80)/2)=1+cos40)/2+(1-cos20)/2+(1+cos80)/2)
=3/2+(cos40+cos80-cos20)=3/2+(2cos60cos20-cos20)=3/2
代入原式=1/4*[3-0+3/2)+1/16=9/8+1/16=19/16,
你答案少加了一个常数1/16