求解一道极限题,高数

lim(a的1/n次方)=1 (a>0)n→∞
2025-04-29 05:43:02
推荐回答(1个)
回答1:

楼上的牛逼了,这也算是证明了。。。我笑。
a>=1时,n→∞ 时,由夹逼准则知道1的1/n次方<=a的1/n次方<=n的1/n次方,
又因为lim(n的1/n次方,n→∞ )=1(这个可以证明,用2项展开式证明),所以lim(a的1/n次方)=1 ,

01,方法参照上边的步骤,知道lim(b的1/n次方,n→∞ )=1,所以lim(a的1/n次方,n→∞ )=lim((1/b)的1/n次方,n→∞ )=1/lim(b的n次方,n→∞ )=1/1=1