很高兴为你解答,解答过程如下图。
希望您能采纳!!!
(1)
Sn =2^(n+2) -4
n=1, a1= 4
for n>=2
an = Sn -S(n-1)
=2^(n+2)- 2^(n+1)
=2^(n+1)
(2)
let
S = 1.2^1+2.2^2+....+n.2^n (1)
2S = 1.2^2+2.2^3+....+n.2^(n+1) (2)
(2)-(1)
S = n.2^(n+1) -(2^1+2^2+....+2^n)
=n.2^(n+1) -2(2^n -1)
bn
=anlog<2>an
=2^(n+1) .log<2> 2^(n+1)
=(n+1).2^(n+1)
= 2(n. 2^n) + 2^(n+1)
Tn=b1+b2+...+bn
=2S + 4(2^n -1)
= 2[n.2^(n+1) -2(2^n -1) ] + 4(2^n -1)
= 4n.2^n
第一问 an=sn-s(n-1)
等于2的n+1次方
第二问bn=2的n+1次方 乘以 n+1
Tn=b1+b2+b3略
2Tn= 略
Tn=2Tn-Tn