(1)∵f(x)=ex-ax,
∴f′(x)=ex-e,由f′(x)=0,得x=1,
x | (-∞,1) | 1 | (1,+∞) |
f′(x) | - | 0 | + |
f(x) | ↓ | 极大值 | ↑ |
∴f(x)在(-∞,1)上单调递减,f(x)在(1,+∞)上单调递增.
(2)f(x)≥1对x∈R恒成立等价于e
x-ax-1≥0对x∈R恒成立,
令g(x)=e
x-ax-1,得g(0)=0,g′(x)=e
x-a,
当a=1时,g′(0)=0,
x<0时,g′(x)<0,g(x)单调递减,
x>0时,g′(x)>0,g(x)单调递增,
g(x)在x=0取得极小值,g(x)≥g(0)=0,g(x)≥0恒成立,
当a>1时,g(x)在[0,lna]单调递减,当x∈[0,lna]时,g(x)≤g(0)=0,
当0<a<1时,g(x)在[lna,0]单调递增,当x∈[lna,0]时,g(x)≤g(0)=0,
当a≤0时,g′(x)≥0,g(x)在R上单调递增,当x≤0时,g(x)≤g(0)=0.
∴存在实数a=1,使f(x)≥1对x∈R恒成立.