解答:(Ⅰ)解:f(x)的导数f'(x)=ex-1.
令f'(x)>0,解得x>0;令f'(x)<0,解得x<0.
从而f(x)在(-∞,0)内单调递减,在(0,+∞)内单调递增.
所以,当x=0时,f(x)取得最小值1.
(Ⅱ)解:因为不等式f(x)>ax的解集为P,且{x|0≤x≤2}?P,所以对于任意x∈[0,2],不等式f(x)>ax恒成立.
由f(x)>ax,得(a+1)x<ex.
当x=0时,上述不等式显然成立,故只需考虑x∈(0,2]的情况.
将(a+1)x<ex变形为a<?1,
令g (x)=?1,则g(x)的导数g′ (x)=,
令g'(x)>0,解得x>1;令g'(x)<0,解得x<1.
从而g(x)在(0,1)内单调递减,在(1,2)内单调递增.
当x=1时,g(x)取得最小值e-1,
实数a的取值范围是(-∞,e-1).
(Ⅲ)证明:
由(Ⅰ)得,对于任意x∈R,都有ex-x≥1,即1+x≤ex.
令x=?(n∈N*,i=1,2,,n?1),则0<1?<e?.∴(1?
)n<(e?)n=e?i(i=1,2,,n-1),
即(
)n<e?i(i=1,2,,n-1).∴
n |
 |
k=1 |
()n=(
)n+(
)n++(
)n+(
)n<e?(n?1)+e?(n?2)++e?1+1.∵e?(n?1)+e?(n?2)++e?1+1=<=,∴
n |
 |
k=1 |
()n<.