极限审敛法:∵lim(n→∞)n*un=(3/2)^n=+∞∴un发散.比值审敛法:un+1=3^(n+1)/[(n+1)*2^(n+1)]=3^n*3/[(n+1)*2^n*2]un+1/un=3n/(2n+2)lim(n→∞)un+1/un=3/2>1,∴发散根值审敛法:n^√un=3/2*n^√(1/n)=3/2*(1/n)^(1/n)令t=1/n,则当n→∞时t→0,t^t→1∴lim(n→∞)n^√un=3/2>1,发散.