因为三角形ABC和三角形CDE是等边三角形。所以,∠ACB=∠DCE=60°AC=BC,CE=CD
而∠BEC=∠ACB+ACE,∠ACD=∠DCE+∠ACE
所以∠BCE=∠ACD
由边角边定理可证明:三角形BCE全等于三角形ACD
⑴∵ΔABC、ΔCDE是等边三角形,∴CB=CA,CE=CD,∠BCA=∠ECD=60°,
∴∠BCE=∠ACD=120°,
∴ΔBCE≌ΔACD,
⑵由⑴全等得:∠CEF=∠CDH,
∵∠ECF=60°=∠DCE,
∴ΔCEF≌ΔCDH,∴CF=CH,
∴ΔCFH是等边三角形,∴∠FHC=60°=∠DCH,
∴FH∥BD。