求定积分 上限是π⼀2 下限是-π⼀2 (x+1)min{1⼀2 ,cosx}dx

2025-02-25 08:52:07
推荐回答(3个)
回答1:

min{1/2,cosx}
=1/2 -π/3≤x≤π/3
=cosx -π/2≤x<π/3或π/3它是一个偶函数,从而xmin{1/2,cosx}是奇函数。
故∫[x=-π/2,π/2](x+1)min{1/2,cosx}dx
=∫[x=-π/2,π/2]min{1/2,cosx}dx
=1/2*∫[x=-π/3,π/3]1dx+2∫[x=π/3,π/2]cosxdx
=π/3+2sinx|[x=π/3,π/2]
=π/3+2(sinπ/2-sinπ/3)
=π/3+2-√3

回答2:

2-根号3+pi/3

回答3:

邮箱给我